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Abstract: The influence of reversibility and diffusion on the rate constant of rapid bimolecular reactions in solution is explored 
with statistical nonequilibrium thermodynamics. For reactions with stoichiometry A + B ^ C, we find that in dilute solution 
the Smoluchowski-Collins-Kimball steady-state expression for the rate constant is valid only when the steady state is sufficiently 
far from equilibrium (as determined by the criterion AC « -RT In [k°/Air D'R]). Comparable results hold for bimolecular 
reactions with other stoichiometries. On the basis of these considerations, we put forward two caveats in the interpretation 
of experimental data: (1) for measurements in an equilibrium ensemble (e.g., equilibrium perturbation techniques), the bimolecular 
rate constant equals the intrinsic rate constant and is not diffusion dependent; (2) while the Smoluchowski-Collins-Kimball 
expression is valid at steady states sufficiently far from equilibrium, the ratio of the forward to the reverse rate constants does 
not equal the equilibrium constant. The implications of these caveats for the interpretation of experimental data, including 
acid-base neutralization reactions, are discussed. 

I. Introduction 
The theory of rapid bimolecular chemical reactions in solution 

has a rich history beginning with Smoluchowski's original work 
in 1917.' Smoluchowski's idea of describing the rate constant 
for rapid reactions using the diffusion equation was later improved 
in a number of ways by Debye,2 Collins and Kimball,3 and others.4 

The predictions of time-dependent and steady-state relaxation rates 
based on this work have been verified repeatedly in a number of 
simple systems in dilute solution.5 While the extension of the 
Smoluchowski theory to more concentrated solutions and to 
reactants involved in competing reactions (e.g., fluorescence) is 
difficult, we have recently shown how to deal with these and other 
transport effects on rapid bimolecular reactions using statistical 
nonequilibrium thermodynamics.6"8 In this paper, we deal with 
reversible reactions and the influence of diffusion and disequili­
brium on the steady-state bimolecular rate constant. 

Disequilibrium in a chemical reaction can have a number of 
effects on the reaction rate. For example, in the gas phase, 
chemical disequilibrium can modify translational energy distri­
butions9,10 as well as the distribution of internal states." These 
modifications can be significant for flash photolysis induced9 or 
hot-atom reactions10 but seem to be small for thermal bimolecular 
reactions except under special conditions." Translational and 
internal-state effects caused by disequilibrium are generally much 
smaller in solution because of the shorter collisional relaxation 
time scale. This can be circumvented by selectively populating 
internal electronic states, as one does to measure excited-state acid 
association rate constants.12 Here, however, we are interested 
in another effect, namely, the change in the average configurational 
arrangement of one type of reactant around another. This phe­
nomenon is important for so-called "diffusion-controlled" reactions4 

in solution, i.e., rapid bimolecular reactions that have small or 
negligible activation energies. For diffusion-controlled reactions, 
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(9) Chapin, D. M.; Kostin, M. D. J. Phys. Chem. 1968, 48, 3067. 
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the spatial distribution of reactants determines the bimolecular 
encounter frequency and, thereby, the reaction rate constant, which 
can be several orders of magnitude smaller than its gas-phase 
value. For some reactions of this sort, e.g., the recombination of 
iodine atoms, excited vibrational states seem to play a role.13 

Thus, we also explore how disequilibrium with respect to an 
intervening excited state perturbs the spatial distribution of 
reactants. 

There are many types of rapid bimolecular reactions in solution 
for which the back-reaction is sufficiently slow that it causes a 
negligible effect on the spatial distribution of reactants, e.g., 
fluorescence quenching and radical-radical recombination. 
Acid-base neutralization14 reactions, on the other hand, can have 
dissociation rate constants as large as 1010 s~'. For these reactions, 
the influence of the reverse reaction may have a significant effect 
on the spatial distribution of reactants since it provides a "source" 
to replenish the reactant pairs that are depleted by the bimolecular 
"sink . In fact, in a previous investigation of the reinjection of 
receptors in biological membranes after capture by coated pits,15 

we found that the back-reaction can eliminate completely the effect 
of diffusion on the rate of capture of receptors. Here we explore 
this phenomenon further by examining bimolecular reactions in 
solution. A number of mechanisms and stoichiometries are in­
vestigated, including A + A ;= A2, A + B «=J C, and A + B p ! 
A-B i=! C. In the latter reaction, the species A-B might corre­
spond to an excited internal state of the product, C, or an 
"encounter" complex. We obtain explicit results for the radial 
distribution function for reactants in dilute solutions for these 
reactions, while for the first reaction we examine for completeness 
both concentration effects and two methods of driving the reaction 
away from equilibrium. 

Using the radial distribution function, we calculate the observed 
bimolecular rate constants, kobs, for these reactions. In dilute 
solution for the reaction A + B j=t C, our result takes the par­
ticularly simple form 

k°t* = jfcSCK[l + exp(AG//?r)A:0/47rZ)'fl] (1) 

where 

fcscK = * 7 U + k°/4*D'R) (2) 

is the usual Smoluchowski-Collins-Kimball (SCK) expression 
for the bimolecular rate constant and AG is the Gibbs free energy 
for the reaction. Three cases of this expression are notable: (1) 
If the ensemble is at equilibrium, AG = 0 and the observed rate 
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constant is the intrinsic rate constant no matter how fast the 
intrinsic rate constant, k°. (2) When the steady state is sufficiently 
far from equilibrium to the left, i.e., AG « -RT \n (k°/4irD'R), 
one recovers the SCK expression. (3) When the steady state is 
sufficiently far to the right, i.e., AG » -RTIn (k°/4wD'R): there 
are large deviations from the SCK expression. The implication 
of this result is discussed for experimental measurements of bi­
molecular reaction rate constants, especially for acid-base neu­
tralization reactions. 

II. Dimerization 
The simplest example of a reversible bimolecular chemical 

reaction is the dimerization reaction6 

A + A: (3) 

Here the bimolecular rate constant is kobs, and the unimolecular 
decomposition rate constant for the reverse reaction is k. In 
solution, the rate constant for the reverse reaction may be de­
pendent on viscosity due to internal motions that have nothing 
to do with translational diffusion.16 Although we will be interested 
exclusively in the effect of translational diffusion on the bimo­
lecular reaction rate, we return to a discussion of the viscosity 
dependence of the reverse rate constant in section IV. Except as 
indicated in section III, we ignore the possibility of excited internal 
states and assume, therefore, that the value of k is a constant. 

To calculate the steady-state bimolecular rate constant for this 
reaction, we use the formula6"8 

kobs = k°gAA(R) (4) 

where k0 is the collisional or "intrinsic" rate constant and gAA(R) 
is the A-A radial distribution function evaluated at the reaction 
radius, R. Equation 4 is a special case of the general expression 
connecting the rate constant and the radial distribution function. 
We use it simply because it involves the same level of approxi­
mation employed in the usual Smoluchowski theory. We also 
restrict our attention to the value of the observed rate constant 
in a uniform steady state. In this case, gAA(r) is the steady-state 
radial distribution function. 

It is possible to maintain a uniform steady state for the di­
merization reaction in several ways. We consider first the use 
of a steady, uniform source (or sink) of monomer and dimer. Thus, 
on the average, one has 

dpA/df = -2A:obW + 2kpAl + 2K (5) 

dpA7/dt = k°*pA
2 - kpAl - K 

where the overbars represent average number concentrations and 
K is a constant. At steady state one finds that 

K = fcobspA
ss2 - kp^ (6) 

According to statistical nonequilibrium thermodynamics,17 fluc­
tuations around the steady-state values pA

ffi and pAj* satisfy sto­
chastic differential equations. These equations can be used, as 
is outlined in the Appendix and elsewhere,6"8 to obtain the den­
sity-density correlation function and, then, the radial distribution 
at steady state. Carrying out the details one finds that 

SAAW = 

1 - (K/p^) 
expK, r ) *[exp(-£,r) - exp(-f2r)] 

2xZV 27rZ>A0A/«22 - £,2) 

where 

£, 2 = 
4kobspA 

£>A Z)4 
I 2

2 = 
4A:obspA

ss + k 

DA + D. 

(7) 

(8) 

Three things are notable in eq 7. First, gAA(r) = 1 when K 

(16) Kramers, H. A. Physica 1940, 7, 284. Okuyama, S.; Oxtoby, D. J. 
Chem. Phys. 1986, 84. 5824. 

(17) Keizer, J. Statistical Thermodynamics of Nonequilibrium Processes; 
Springer Verlag: New York, 1987; Sections 6.6 and 9.6. 

vanishes, i.e., at equilibrium. Thus, the radial distribution function 
agrees with the correct equilibrium formula, as it is guaranteed 
to in general by the thermodynamic structure of the theory.18 

Second, in the limit that k is small, the second term in brackets 
in eq 7 is negligible and K/pp^1 ^ A:obs so that the radial dis­
tribution function reduces to the usual Smoluchowski form in the 
absence of the reverse reaction. Third, when k is not negligible, 
the input term K can be positive or negative. In the latter case 
the radial distribution function can exceed unity at r = R. We 
discuss this point in detail below. 

The inverses of the terms £, and £2 in eqs 7 and 8 are correlation 
lengths whose values determine the influence of the bimolecular 
(l/k^p/f) and unimolecular (\/k) lifetimes on this reaction, as 
described previously.5"8,17 The bimolecular lifetime effect is 
generally significant only at concentrations above 10"3 M. The 
effect of the unimolecular lifetime, however, can persist even in 
dilute solution. In fact, noting that in dilute solution £2

2 - £i2 = 
-kDA/DA2{DA + Z)A2), it is easily shown that eq 7 reduces to 

SAAM = 
* o b s - ^A 2

5 VPA 5 5 2 U>A 

2wDAr Dk 
cxp(-r[k/DA + 

DA 

0A2]1 / 2)-7rexp(-r[A:/Z>A 2] , / 2) (9) 

Although the term in braces is always positive, its size depends 
on the reverse rate constants and the diffusion constants. For k 
< 108 s"', however, its value will be close to unity for small 
molecules (D ~ 10"5 cm2 s"1). Indeed, k must be of order 10" 
s"1 for this term to differ appreciably from unity even for r near 
the reaction radius, R. 

To calculate the bimolecular rate constant, eq 9 is used in 
conjunction with eq 4.5"8 After rearrangement, one easily finds 
that 

kobs = k°[\ + (kpA* / P^)B /2i:DAR]/{\ + k°B/2irDAR] 

(10) 

where B is the expression in braces in eq 9. As we have already 
noted, the value of kobs at equilibrium is k0. Thus, with the 
principle of detailed balance, which applies at equilibrium, eq IO 
can be rewritten with k°/k = fC, the equilibrium constant for this 
reaction. Recalling further the thermodynamic identity for the 
Gibbs free energy for the reaction in dilute solution 

AG = -RT In F? + RT In (PA*S/PA ) (H) 

eq IO becomes 

J-ObS = I r )[l + exp(AG/RT)k°/2TrDAR) 
Vl +k°/2irDAR/ 

(12) 

with R = R/B, the apparent reaction radius as modified by the 
influence of the unimolecular lifetime. 

The first term in eq 12 is recognized as the usual SCK result, 
corrected for the identity of reactants and the bimolecular life­
time.5'68 Because B will be close to unity unless k is quite large, 
this term is essentially unchanged by the back-reaction. In the 
second term, the quantity exp(AG/i?T) is a measure of the dis­
tance that the reaction is from equilibrium, which can be very 
significant. Thus, at equilibrium when AG = 0, it cancels the 
denominator in the first term, yielding k0** = k0, as expected, while 
when k —- 0, AG —* -<*> and one recovers the usual SCK result, 
also as expected. Intermediate situations are possible, as illustrated 
in Figure 1 in which kobs/k° is plotted as a function of In (^0/ 
2irDAR) for various values of AG/RT. In panel A of that figure, 
one finds results for AG/RT < 0, which correspond to a net input 
of A at the steady state (i.e., K > 0). For AG/RT « 0, these 
curves converge to the usual limiting far-from-equilibrium results 
of Smoluchowski, Collins, and Kimball. In panel B, the results 

(18) See also: ref 17, Chapter 3. 
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Figure 1. Panel A: effect of different negative values of AG/RT on the 
observed bimolecular rate constant as a function of kP/2rDAR (cf. eq 12). 
Panel B: similar results for AG/RT> 0. Note that as AG/RT ^ -<=, 
the curve converges on the usual Smoluchowski-Collins-Kimball result. 

for AG/RT > 0 (an input of product A2 into the system) are 
shown. Notice that under these conditions the observed rate 
constant can greatly exceed the collisional rate constant, k0, even 
if the ratio k°/2irDAR is rather small. 

The origin of the effect of disequilibrium on the observed 
reactant rate is easily understood. Imagine sitting on an "average" 
A molecule. According to eq 4, the average density of A at a 
distance R away determines the reaction rate. In the usual 
Smoluchowski theory, this density is determined by two kinetic 
processes, diffusion and the intrinsic (collisional) reaction 
rate—diffusion being important only when it is slow enough that 
it cannot replenish reactants removed at R by reactive collisions. 
When back-reaction is possible, the local concentration of A at 
R is further replenished by the process A2 -* A + A. In fact, 
when the forward and reverse processes balance, as they do at 
equilibrium, the net result of reaction is to leave the average density 
unchanged and, thus, diffusion has no effect on the reaction. On 
the other hand, if the back-reaction is sufficiently slow—as is 
usually assumed—the formation of geminate pairs has little impact 
and, thus, only diffusion and the bimolecular collision rate have 
an effect. The extent of disequilibrium and its sign are clearly 
important since they determine whether removal of A-A pairs 
by the forward reaction or their reinjection by the reverse reaction 
will have the greater influence on the density at the reaction radius. 
In fact, if disequilibrium at the steady state favors the product 
A2 (i.e., AC > 0), then the density at the reaction radius will be 
increased above its equilibrium value. It is this latter effect that 
is described quantitatively in Figure IB. 

Similar conclusions are reached if we use the following pho­
tochemical mechanism to drive the dimerization reaction to steady 
state: 

A + A 

A + A Z=Z. A2 

(13) 

SAAW = 1 -
kobsk> 

2irDAr(k + **) 

DA-DA 

DA 

exp(-r[k/DA + 

DAlY'2) + -^ cxp(-r[k/DAl]^)) (14) 

It is easy to see for small molecules that the term in braces is near 
unity unless A: is greater than 108 s-1. Using eq 4 and a notation 
to that in eq 10, we find that 

k0* = k°/(\ + fk°/2wDAR) (15) 

where B is now defined by the braces in eq 14 a n d / = k*/k + 
k*. Using eq 15 along with a little algebra involving the 
steady-state condition for this mechanism, i.e. 

jfcob.pA«»2 = (A + k*)pk*
s 

it is not difficult to show that 

1 - exp(AG//?r) 
/ = 

1 + (k°/2irDAR) exp(AG/RT) 

from which it follows that 

A:0 

(16) 

(17) 

&°t* = 
. 1 + k°/2irDAR 

[1 + exp(AG/J?r)A:0/27r£>A/j] 

(18) 

in dilute solution. Equation 18 has precisely the same dependence 
on the deviation from equilibrium as found for the uniform driving 
mechanism in eq 12. Note, however, that the photochemical 
mechanisms can only increase the density of A molecules in the 
system, thus leading only to negative values of AG. 

While the two methods of driving the steady state (uniformly 
or photochemically) produce the same dependence of the bimo­
lecular rate constant on Gibbs free energy difference, their de­
pendence on other parameters is different. For example, for a 
sufficiently large reverse rate constant, k, the term in braces in 
eq 14 can become negative. This increases the radial distribution 
function a t R beyond its equilibrium value, producing a value of 
Aobs in eq 18 that is greater than k0. Something comparable is 
seen when one retains the density-dependent terms in the corre­
lation lengths for photochemical driving. If one calculates Aobs 

as a function of k* with the total number of A molecules fixed, 
one finds that Aobs = k0 at k* = 0 (equilibrium) and that kobs 

decreases to a minimum and then increases again at values of k* 
that depend on k. These differences with the uniform driving 
mechanism are due to the fact that the photochemical production 
of A from A2 produces local geminate pairs, while the uniform 
mechanism injects A molecules randomly into solution. In this 
way, the photochemical mechanism augments the local-pair 
production due to the back-reaction, ultimately swamping the loss 
of pairs due to the bimolecular step. 

IH. Other Stoichiometrics 
The conclusions regarding the dependence of the bimolecular 

rate constant on the back-reaction rate for the dimerization re­
action can be extended to reactions with other stoichiometrics. 
The steady-state radial distribution function, gAz(r), is easily 
obtained in dilute solution for the reaction 

A + B ^ t C 
K 

(19) 

with use of computer-assisted algebra." For uniform inputs, this 
leads to an expression for the bimolecular rate constant analogous 
to that for the dimerization reaction, namely 

Aobs = [fc°/( 1 + k°/4irD'R)][\ + exp(AG/RT)k°/4irD'R] 
(20) 

(19) Wolfram, S. Mathematical Addison-Wesley: Reading, MA, 1988. 



Bimolecular Chemical Reactions J. Am. Chem. Soc, Vol. 112, No. 22, 1990 7955 

where D'= Z)A + DB. Again one finds that the apparent reaction 
radius, R, is modified by the back-reaction when k is on the order 
of 108 s"1 or larger. As before, eq 20 reduces to the familiar SCK 
expression when AG/RT « 0 and gives k0** = k0 when the en­
semble is at equilibrium. 

For completeness, we consider the following two reaction 
schemes 

A + A (21) 

A + A 3 = t A2* *+ 

and 
k*" k+ 

A + B = A-B 5=t C 
* k" 

(22) 

in which an intermediate species, A2* or A-B, precedes the stable 
molecule, A2 or C. Indeed, Eigen and co-workers15 have intro­
duced ion pairs (analogous to the intermediate A-B) in their 
analysis of experimental rates of acid-base neutralization reactions, 
while recent experiments on iodine recombination21 have uncovered 
excited vibrational and electronic states analogous to A2*. Thus, 
it seems important to assess the effect of such intermediates on 
the bimolecular rate constant. For these reactions, we find the 
same formal expressions for the observed rate constants as given 
in eqs 18 and 20, except that the free energy difference AG is now 
for the steps A + A;= A2* and A + B «=J A-B, respectively. Since 
additional unimolecular rate constants (i.e., k+ and k") are involved 
in these schemes, the effective reaction radius, R, will depend on 
several additional characteristic lengths. As before, this effect 
remains negligible as long as all the unimolecular rate constants 
are not too large. 

IV. Relationship to Other Theories 
There are several existing theories of diffusion effects on re­

versible reactions,22 the most widely used being that of Eigen.23 

Eigen's ideas were developed in order to analyze kinetic data on 
acid-base neutralization reactions,15'20 which are invariably re­
versible and for which equilibrium constants are usually well-
known. In Eigen's theory, a contact ion pair A-B is identified 
as an intermediate in the neutralization reaction, as in eq 22. 
Regarding eq 22 as a mass action law scheme and eliminating 
transient intermediate A-B give the rate law 

dpA/dr = -fcRpApB + kDpc (23) 

where the overbars represent bulk concentrations and the apparent 
recombination and dissociation rate constants are 

* . * 
k°H* 

kn = 
kkr 

k + k+ "" k + k+ 

Equation 23 gives rise to a single relaxation time 

MPA
 +

 PB) + *D 

(24) 

(25) 

as found experimentally for "normal" protolytic reactions.15 

According to Eigen,20,23 the value of kobs in these equations 
should be taken from the steady-state Smoluchowski theory as 
modified by Debye to correct for ionic forces. The value of k is 
assumed to be given by microscopic reversibility as 

k = kobs/K^ (26) 

where K'\ is the equilibrium constant for ion-pair formation, e.g., 
the first step in eq 22. Several attempts22,23 have been made to 
justify eq 26 by applying a Smoluchowski-type theory to the 
back-reaction. By appropriate modification of boundary condi-

(20) Eigen, M.; Kruse, W.; Maass, G.; De Maeyer, L. Prog. React. Kinet. 
1964, 2, 286. Eigen, M. Angew. Chem. 1964, 3, 1. 

(21) Hynes, J. T. Annu. Rev. Phys. Chem. 1985, 36, 573. 
(22) Burlatsky, S.; Levin, P. P.; Khudyakov, I. V.; Kuzmin, V. A.; Ovch-

innikov, A. A. Chem. Phys. Lett 1979, 66, 565. Newmann, W. Chem. Phys., 
submitted for publication. 

(23) Eigen, M. Z. Phys. Chem. (Munich) 1954, /, 176. 

tions, one can, in fact, obtain eq 26. This boundary condition treats 
the A-B pair as a source of B molecules, with a sink at infinity. 
If the reaction is far from equilibrium, this approach leads to the 
correct low-density radial distribution function of B molecules 
around a central A-B pair, e.g., in the absence of interactions 
gBA_B(/-) = R jr. To calculate the rate constant, k, however, Eigen 
uses the flux from the source, which implies that translational 
diffusion of the A-B pair alone determines the reverse rate con­
stant. A simple consequence of Eigen's theory is that 

kK/kD = *»,*•, = K' (27) 

where from microscopic reversibility K*2 = k+/k" is the equilibrium 
constant for the second step in eq 22 and K' is the overall 
equilibrium constant. Under conditions of diffusion control, one 
has further that k « k+ so that eq 24 implies 

kR = kobs kD = k/K\ (28) 

These are the equations used by Eigen and others to analyze 
acid-base neutralization reactions.15,20 Equation 26 and the as­
sumption that k<** is given by the Smoluchowski-Debye expression 
are the key ingredients of this analysis. 

To examine the validity of these assumptions, we look separately 
at equilibrium states and nonequilibrium steady states. In 
equilibrium ensembles, it is well-known that eq 26 is valid. Indeed, 
as we discussed in the previous sections, it is a rather general 
consequence of statistical nonequilibrium thermodynamics. On 
the other hand, it is not true at equilibrium that k** depends on 
the diffusion constant. At equilibrium, the bimolecular rate 
constant is determined by an average over the canonical distri­
bution function,17,24 and, as shown explicitly in sections II and 
III, the rate constant has the value k*** = k0. Related results have 
been obtained recently for reversible reactions by Szabo and 
Agmon25 using a time-dependent version of the Smoluchowski 
theory. Thus, while one of the basic tenants of Eigen's theory 
is valid at equilibrium, namely that the ratio of the forward and 
reverse rate constants can be obtained from the equilibrium 
constant, it is not true that k^* depends on the diffusion constant. 
This has important implications for the analysis of data obtained 
by perturbation methods around equilibrium. 

For steady states that are maintained sufficiently close to 
equilibrium, we saw in section III that the effect of diffusion on 
kobs depends on the distance away from equilibrium as measured 
by AG1, the Gibbs free energy of reaction for the first step in eq 
22. Explicitly 

kobs = [k°/(\ + k0/WR)][I + exp(AG,/^r)/t°/4irZ)'i?] 
(29) 

Thus, even in a steady-state ensemble—unless conditions are such 
that AG1/RT « -In (k°/4irD'R)—the bimolecular rate constant 
is not equal to the usual Smoluchowski expression. 

It seems unlikely that eq 26 ever will be valid in steady en­
sembles far from equilibrium unless k°/4wD'R « 1. Our view 
on this is motivated by two considerations. First, forget about 
the idea of an ion-pair intermediate, so that the reaction mech­
anism is simply given by A + B & C. Thus, the reverse reaction 
rate constant is determined by the lifetime of the bound state, C. 
This lifetime is a function of the molecular interaction potential, 
the distribution of thermal energies, and solvent effects, including 
viscosity. For a bound species, viscous effects are determined by 
frictional damping on crossing the barrier to the unbound state. 
The effect is described reasonably well by the Kramers theory,16,21 

which does not require a knowledge of the distribution of the 
unbound reactant pairs that is important for calculating the bi­
molecular rate constant. Thus, if an ion pair can be distinguished 
from an unbound A-B pair only by their close proximity, then 
it is not necessary to include it explicitly in the calculation. This 
implies that our results for the reversible reaction A + B ^ C 
are valid. On the other hand, if an ion pair is a species distinct 

(24) Hill, T. L. An Introduction to Statistical Thermodynamics; Dover: 
New York, 1986; Chapter 11. 

(25) Agmon, N.; Szabo, A. J. Chem. Phys. 1990, 92, 5270. 
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from a "free" A-B pair, it must involve some sort of bound state 
between A and B. In this case, however, the preceding argument 
implies that the Kramers theory, not the Smoluchowski theory, 
must be used to calculate the reverse rate constant and that eq 
26 is not valid. In either case, eq 26 would not be valid for steady 
states sufficiently far from equilibrium unless IC0/4TD'R « 1. 

V. Implications for Analysis of Experimental Data 
There are many important diffusion-controlled reactions for 

which the back-reaction has a negligible effect. Rates of 
fluorescence-quenching reactions,26 for example, are measured 
by populating an excited state by radiation. Since the rate of 
repopulation of this excited state by the reverse of the quenching 
process is negligible, the quenching reaction is always far from 
equilibrium under normal experimental conditions.7 Thus, the 
back-reaction will have a negligible effect on the quenching rate 
constants, as is well-supported by experimental evidence.7,27 

Other types of rapid reactions, including acid-base neutrali­
zation reactions, are often studied close to or under equilibrium 
conditions. For example, much of the work of Eigen and col­
laborators20 on proteolytic reactions utilized small perturbations 
around equilibrium27 to measure recombination rates. The time 
or frequency response in these experiments is determined by 
linearizing kinetic equations around the equilibrium state. As a 
consequence, the values of rate constants are determined by an 
equilibrium ensemble. As we have seen, this implies that the 
bimolecular rate constant, k0**, has its intrinsic value, k0, dictated 
by thermal equilibrium. This value is independent of diffusional 
effects since the distribution of reaction pairs at equilibrium is 
determined by the canonical distribution. A similar statement 
holds true for bimolecular rates determined by equilibrium NMR 
techniques in which line shapes are used to calculate rate con­
stants.27 Although for simplicity the effect of ionic interactions 
have not been taken into account in our calculations here, they 
are easily included in the theory6 and do not alter these general 
conclusions. 

This line of reasoning forces us to conclude that many of the 
reported recombination rate constants for proteolytic reactions 
do not reflect diffusion-controlled processes. This is contrary to 
the widely accepted theory of Eigen5 described in the previous 
section. On the other hand, the measured rate constants for these 
reactions are on the order of 1010-10" M"1 s"1, which are of a 
size that easily could be accounted for23 by intrinsic thermal rate 
constants, k0. 

It is difficult to verify directly that the recombination rate 
constant of a neutralization reaction is proportional to the relative 
diffusion constant since changes in the solvent may strongly effect 
the rates of these reactions. Indeed, the evidence favoring in­
terpretation of the recombination rate of proteolytic reactions as 
diffusion-controlled is indirect.5 On the basis of the theoretical 
conclusions outlined above, we believe that a critical reexamination 
of the data on proteolytic reactions, including the conditions under 
which experiments were performed, is necessary. On the other 
hand, our conclusions suggest that the use of microscopic rever­
sibility14 (eq 26) to obtain the reverse rate constant from data 
obtained by the perturbation of equilibrium is correct. Although 
we have argued for diffusion-controlled reactions that microscopic 
reversibility is invalid far from equilibrium, it is certainly valid 
if the bimolecular rate constant has its equilibrium value, A:0. 

These conclusions are summarized in the following caveats for 
interpretation of data: (1) If the bimolecular rate constant is 
measured under far from equilibrium conditions that favor the 
reactants, then diffusion effects will be manifest. In this case, 
the dilute solution limiting law is given by the Smoluchowski-
Collins-Kimball formula, corrected for unimolecular lifetime 
effects. Under these conditions, however, the reverse rate constant 

(26) Turro, N. Modern Molecular Photochemistry; Benjamin-Cummings: 
Menlo Park, 1978; Chapter 6-8. 

(27) Hague, D. N. Fast Reactions; Wiley-Interscience: London, 1971; 
Chapter 2. 

(28) Weston, R. E.; Schwarz, H. Chemical Kinetics; Prentice-Hall: En-
glewood Cliffs, NJ, 1972; Chapter 4. 

cannot be deduced by microscopic reversibility unless the reaction 
is slow. (2) If measurements are made under equilibrium con­
ditions, diffusion has no effect on the bimolecular rate constant. 
Microscopic reversibility, however, can be used to obtain the 
reverse rate constant. 

Our results can be used to estimate when steady-state conditions 
are sufficiently "far" from equilibrium that diffusion effects are 
important. For example, for the photochemically driven dimer-
ization reaction in eq 13, the formula in eq 15 for the observed 
rate constant can be rewritten as 

kabs = 2irDxRk°/(k° + IvD^R - gk°) (30) 

where g = kjk + k*. The constant k* is the rate constant for 
absorption of radiation in the step 

and can be deduced with Beer's law29 to be 

k* = (I0/hv)d (31) 

where /0 is the power of the light source, « is the extinction 
coefficient, and / is the path length. For a 100-W laser, one can 
estimate from (31), roughly, that k* ^ 1 s-1. Thus, at this 
intensity, as long as k « 1 s"\ eq 30 shows that kobs is given by 
the usual SCK-type formula. On the other hand, if 1 s"1 « k, 
then kobs = A:0. 

A formula comparable to (30) can be derived for the recom­
bination reaction (19) and reactions 21 and 22 with the inter­
mediate states A2* and A-B. An explicit formula for kobs is 
obtained by expressing the factor exp(AG|//?71 (cf. eq 29) in 
terms of rate constants and concentrations by using the average 
conditions of steady state. One finds in the latter cases that 

fcobs = kdk°/(k0 + kd - gk0) (32) 

where kd = ITTD^R and g = k(k* + k-)/[k*(k + k+) + kk~] for 
the dimerization reaction (21) and Acd = 4irD'R and g = [Kk + 
kk-(PAT ~ PA)]/[**-(PAT - PA) + K(k + Ar + k+)] for the re­
combination reaction (22) with pAT, the total density of A. Notice 
that at equilibrium where A:* and AT vanish, eq 32 gives k0^ = k° 
and that unless g « 1, kobi differs from the Smoluchowski-
Collins-Kimball result, as deduced earlier. Equation 32 simplifies 
considerably if we make the assumptions that A2* and A-B are 
transient intermediates (so that kr is negligible with respect to 
A:* and Ac+) and that A is present in great excess (so that pAT « 
pA). In both cases, one then finds that g = A:/(A: + k+). Clearly, 
unless k « Ar+, there will be a significant correction to the SCK 
formula. In fact, in the opposite extreme, i.e., At+ « k, g = 1, 
and k** = Â . This is a consequence of the fact that with transient 
intermediates, as in eqs 21 and 22, it is not necessarily possible 
to drive the first reaction far enough from equilibrium that 
AGJRT « 0. Note that according to eq 32 

Since 0 < g < 1, this means that the effect of the back-reaction 
is to reduce the effect of diffusion in a way that depends on the 
relative lifetimes, 1/A: and 1/A:+, of the transient intermediate. 
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Appendix 
According to the statistical theory of nonequilibrium thermo­

dynamics,12 fluctuations in the local number density of reactants 

(29) Moore, W. J. Physical Chemistry, 4th ed.; Prentice-Hall: Englewood 
Cliffs, NJ, 1971; pp 750-751. 
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and products are determined by the combined effect of the mass 
action laws and diffusion. The fluctuations are defined as the 
instantaneous deviation of the number density at any point r from 
the uniform average value given by eq 5, e.g. 

5pA(/,f) = pA(r,f) - PA ( ^ 1 ) 

5PA2(^O = PA 2 (^O - PA2 

The relevance of these fluctuations for diffusion-controlled5"8 

reactions is that their spatial correlation functions are related to 
the radial distribution function and, thereby, to the bimolecular 
rate constant (cf. eq 4). For the dimerization reaction at steady 
state, the precise relationship is6 

*AA(I' - M ) - I - 5(r - / - V P A " + <«PA( ' .0 S P A K O ) 8 V P A 8 5 2 

(A-2) 

where <•••> represents the ensemble average. At steady state, the 
fluctuations for the dimerization reaction in eq 3 are Gaussian 
random variables satisfying the coupled stochastic differential 
equations:5"8'12 

dhpjbt = -4k°**Pj*8pA + 2k&pA2 + £>AV25pA + /A (A-3) 

ddpA2/dt = 2*°"»/)A"«pA - *«pAl + ^A2V2SPA2 +ZA 2 

The terms / A and/A j are purely random Gaussian contributions 
to the time rates of change that vanish on the average and have 
the following space-time correlation functions: 

(ZA(^) ZA(MO) = 
(4AT0158PA882 + 4kpA* - 2 Z V A 5 8 V , 2 ) 5(/-r1 6(t-f) (A-4) 

(7A2(',0 ZA(MO) = (ZA(^) ZA2(MO > = 

-2(/tobspA
882 + A:PA2

88) 5(/-M 5(r~0 

( Z A 2 ( ^ O ZA2 (Z1 ' . ' ' ) > = 

( ^ P A 8 8 2 + kpA* - 2OA2PA2
88V,2) Or-r1) 6(t-f) 

By using Fourier transforms,6 eqs A-3 and A-4 can be solved for 
the steady-state density-density correlation function on the 
right-hand side of eq A-2. This yields the radial distribution 
function exhibited in eq 7. 
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Abstract: The stabilities of different isomers of several diazaalkenes (diazapropene, diazabutene, and diazapentene) were compared 
at several levels of theory. For the simplest diazaalkenes, methyldiazene (1,2-diaza-l-propene) and formaldehyde hydrazone 
(2,3-diaza-l-propene), the two isomers are very close in energy. At the MP4/6-31 l+G**//MP2/6-31G* level including zero-point 
and heat capacity corrections, the 1,2-isomer is 0.4 kcal/mol more stable than the 2,3-isomer. Bond dissociation energies were 
calculated for the formation of the diazapropenyl radical and the diazabutenyl radical. The best calculated BDE for the C—H 
bond in HN=NCH3 (1,2-diaza-l-propene) is 87.3 kcal/mol while the N - H bond in H2NN=CH2 (2,3-diaza-l-propene) 
has a BDE value of 86.9 kcal/mol. The lowest energy diazabutene isomer is the hydrazone isomer, 1,2-diaza-2-butene, which 
is 2.4 kcal/mol more stable than the two azo isomers. 

Introduction 
The l,2-diazapropene/2,3-diazapropene (azo/hydrazone) 

tautomeric pair is similar to the keto-enol system in that shifting 
a hydrogen in the hydrazone/azo system shifts the double bond 
from N = N to N = C while in the keto-enol system the double 
bond shifts from C = O to C = C . However, the azo/hydrazone 
system has received much less attention both theoretically and 
experimentally. In the liquid phase, the hydrazone 5,6-diaza-4-
decene (C 4H 9NHN=CHC 3H 7) has been found1 to be 3.3 
kcal/mol more stable than the azoalkene 5,6-diaza-5-decene 
(C4H9N=NC4H9). By comparison, the keto form of acetone has 
an enthalpy 13.9 kcal/mol lower than its enol form in the gas 
phase.2 The present study is undertaken to determine which form 
(azo/hydrazone) is more stable in the gas phase and to understand 
the factors leading to that preference. By determining the bond 
dissociation energy (BDE) for loss of the most weakly bound 
hydrogen, the radical stabilizing ability of the - N = N R group 
can be determined. 

Previous theoretical calculations on formaldehyde hydrazone 
include a MNDO study3 of the E-Z isomerization of 2, an ab 

(1) Lebedeva, N. D.; Masalitinova, T. N.; Mon'yakova, O. N.; Oleinikova, 
T. P. Zh. Org. Khim. 1980, 16, 256-258. 

(2) Holmes, J. L.; Lossing, F. P. J. Am. Chem. Soc. 1982, 104, 2648. 
(3) Ertl, P. Collect. Czech. Chem. Commun. 1988, 53, 2986-2994. 

Table I. Compound Number, Name, and Formula List of Species 
Studied 

no. name formula 

1 1,2-diaza-l-propene 
2 2,3-diaza-l-propene 
3 diazapropenyl radical 
4 2,3-diaza-2-butene 
5 2,3-diaza-l-butene 
6 1,2-diaza-l-butene 
7 1,2-diaza-2-butene 
8 1,2-diazabutenyl radical 
9 2,3-diazabutenyl radical 

10 2,3-diaza-2-pentene 
11 3,4-diaza-2-pentene 

HN=NCH3 
H2NN=CH2 
HNNCH2 
CH3N=NCH3 
H2C=NNHCH3 
HN=NCH2CH3 
H2NN=CHCH3 
HNNCHCH3 
H2CNNCH3 
CH3CH2N=NCH3 
CH3CH=NNHCH3 

initio study4 on conformations and E-Z isomerizations of 2 and 
7 at the MP2/6-31G**//4-31G and HF/6-31G**//4-31G levels, 
respectively, an ab initio study5 of 2 and protonated 2 at the 
HF/6-31G** level, and a recent study6 of 2 and the radical cation 

(4) Benassi, R.; Taddei, F. J. Chem. Soc, Perkin Trans. 2 1985, 
1629-1632. 

(5) Armstrong, D. R.; Walker, G. T. THEOCHEM 1987, 149, 369-389. 
(6) Pacansky, J.; McLean, A. D.; Miller, M. D. J. Phys. Chem. 1990, 94, 

90-98. 
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